r.Sys.Date()“What socioeconomic factors (race, income, etc.) are predictive of housing being more or less pet inclusive?”
Another specific question that we want to answer is: “How does average rent vary as a function of pet inclusive housing? Rent varies very little as a function of pet housing.
## **Summary Statistics:**
## - Pearson r: 0.0135
## - R²: 2e-04
## - Slope: 0.2014
## - % with PI_SCORE = 0: 1.6
## **Summary Statistics:**
## - Pearson r: 0.0135
## - R²: 2e-04
## - Slope: 0.2014
## - % with PI_SCORE = 0: 1.6
## **Summary Statistics:**
## - Pearson r: 0.0135
## - R²: 2e-04
## - Slope: 0.2014
## - % with PI_SCORE = 0: 1.6
## **Summary Statistics:**
## - Pearson r: 0.0135
## - R²: 2e-04
## - Slope: 0.2014
## - % with PI_SCORE = 0: 1.6
## **Summary Statistics:**
## - Pearson r: 0.0135
## - R²: 2e-04
## - Slope: 0.2014
## - % with PI_SCORE = 0: 1.6
| RPL Theme | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| All Themes | 10.9% | 12.8% | 16.3% | 22.7% | 37.2% |
| Socioeconomic Status | 14.8% | 13.8% | 19.1% | 23.6% | 28.7% |
| Household Characteristics - | 26.98% | 14.83% | 16.87% | 17.69% | 23.63% |
| Racial & Ethnic Minority Status | 8.1% | 13.5% | 19.9% | 23.6% | 34.9% |
| Housing Type & Transportation | 6.7% | 14.5% | 24.6% | 27.6% | 26.6% |
## # A tibble: 11 × 7
## `Numeric Columns` `1` `2` `3` `4` `5` Combined
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AvgRent 1509. 1602. 1518. 1551. 1521. 1541.
## 2 WgtLimit 70 68 66 74.5 70 70
## 3 MaxPets 2 2 2 2 2 2
## 4 RefDepMin 325 316. 322. 317 318 319
## 5 RefDepMax 349 344. 349 365 345 348.
## 6 RefDepAvg 344. 327. 343. 353. 322. 336.
## 7 NonRefMin 322. 336. 314 318 343 326.
## 8 NonRefMax 340 348 365 355 355 355
## 9 NonRefAvg 344. 344. 334. 332. 336. 336.
## 10 PetRent 27 29 27 26 26 26
## 11 PI_SCORE 98 96 95 97 96 96
## # A tibble: 12 × 7
## `Logical Columns` `1` `2` `3` `4` `5` Combined
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 PetsAllow_by_Poperty 61% 58% 58% 65% 62% 61%
## 2 PetsAllow_by_Unit 79% 77% 79% 82% 78% 79%
## 3 BreedRestr_by_Poperty 87% 92% 92% 86% 90% 89%
## 4 BreedRestr_by_Unit 62% 64% 69% 67% 63% 65%
## 5 WalkArea_by_Poperty 19% 27% 25% 28% 26% 26%
## 6 WalkArea_by_Unit 7% 13% 9% 16% 14% 13%
## 7 IntvwReq_by_Poperty 6% 8% 9% 7% 10% 9%
## 8 IntvwReq_by_Unit 2% 4% 3% 4% 3% 3%
## 9 WashArea_by_Poperty 22% 23% 32% 21% 18% 22%
## 10 WashArea_by_Unit 26% 25% 29% 22% 19% 23%
## 11 PI_by_Poperty 46% 41% 38% 35% 39% 39%
## 12 PI_by_Unit 52% 49% 49% 41% 45% 46%
| Name | func_df |
| Number of rows | 1227 |
| Number of columns | 43 |
| _______________________ | |
| Column type frequency: | |
| character | 21 |
| logical | 6 |
| numeric | 16 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| PropName | 0 | 1.00 | 3 | 45 | 0 | 1100 | 0 |
| PropStat | 0 | 1.00 | 6 | 8 | 0 | 2 | 0 |
| MgmtCo | 0 | 1.00 | 7 | 84 | 0 | 347 | 0 |
| OnsiteMgr | 0 | 1.00 | 4 | 25 | 0 | 548 | 0 |
| Address | 0 | 1.00 | 10 | 46 | 0 | 1112 | 0 |
| City | 0 | 1.00 | 6 | 22 | 0 | 1173 | 0 |
| County | 54 | 0.96 | 4 | 11 | 0 | 40 | 0 |
| State | 0 | 1.00 | 4 | 14 | 0 | 50 | 0 |
| Market | 0 | 1.00 | 7 | 7 | 0 | 1 | 0 |
| SubMkt | 0 | 1.00 | 5 | 33 | 0 | 114 | 0 |
| BldgClass | 530 | 0.57 | 1 | 2 | 0 | 9 | 0 |
| BldgTier | 0 | 1.00 | 1 | 3 | 0 | 4 | 0 |
| HsgType | 0 | 1.00 | 7 | 35 | 0 | 15 | 0 |
| BldgType | 0 | 1.00 | 8 | 9 | 0 | 4 | 0 |
| Website | 677 | 0.45 | 17 | 109 | 0 | 545 | 0 |
| HTypConv | 0 | 1.00 | 5 | 12 | 0 | 2 | 0 |
| ALL_QUIN | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| SOCIO_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| HH_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| RACE_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| HTYPE_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
Variable type: logical
| skim_variable | n_missing | complete_rate | mean | count |
|---|---|---|---|---|
| PetsAllow | 0 | 1.00 | 0.61 | TRU: 754, FAL: 473 |
| BreedRestr | 477 | 0.61 | 0.85 | TRU: 641, FAL: 109 |
| WalkArea | 491 | 0.60 | 0.30 | FAL: 515, TRU: 221 |
| WasteArea | 497 | 0.59 | 0.90 | TRU: 654, FAL: 76 |
| IntvwReq | 498 | 0.59 | 0.11 | FAL: 652, TRU: 77 |
| WashArea | 477 | 0.61 | 0.18 | FAL: 615, TRU: 135 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Zip | 0 | 1.00 | 47221.51 | 42220.11 | 0.00 | 619.00 | 43830.00 | 95009.00 | 95951.00 | ▇▁▁▁▇ |
| Units | 0 | 1.00 | 147.00 | 170.58 | 2.00 | 31.00 | 89.00 | 203.00 | 1101.00 | ▇▂▁▁▁ |
| Stories | 86 | 0.93 | 2.95 | 2.12 | 1.00 | 1.00 | 2.00 | 4.00 | 19.00 | ▇▂▁▁▁ |
| YrBuilt | 27 | 0.98 | 1989.84 | 23.91 | 1896.00 | 1974.00 | 1992.00 | 2008.00 | 2025.00 | ▁▁▅▇▇ |
| AvgRent | 658 | 0.46 | 1582.15 | 439.47 | 667.14 | 1256.11 | 1541.48 | 1839.06 | 3197.23 | ▃▇▅▂▁ |
| WgtLimit | 859 | 0.30 | 73.27 | 25.17 | 21.00 | 56.00 | 70.00 | 87.25 | 157.00 | ▃▇▅▂▁ |
| MaxPets | 811 | 0.34 | 2.14 | 0.62 | 1.00 | 2.00 | 2.00 | 2.00 | 5.00 | ▁▇▂▁▁ |
| RefDepMin | 978 | 0.20 | 318.13 | 60.45 | 112.00 | 273.00 | 319.00 | 358.00 | 534.00 | ▁▅▇▃▁ |
| RefDepMax | 967 | 0.21 | 348.93 | 75.22 | 169.00 | 294.00 | 348.50 | 399.00 | 561.00 | ▂▆▇▃▁ |
| RefDepAvg | 978 | 0.20 | 333.87 | 68.48 | 175.30 | 283.20 | 336.30 | 374.10 | 543.20 | ▂▇▇▂▁ |
| NonRefMin | 927 | 0.24 | 329.54 | 67.57 | 169.00 | 284.75 | 326.50 | 377.25 | 549.00 | ▂▇▇▂▁ |
| NonRefMax | 910 | 0.26 | 356.21 | 73.51 | 169.00 | 311.00 | 355.00 | 399.00 | 571.00 | ▁▅▇▃▁ |
| NonRefAvg | 918 | 0.25 | 342.10 | 67.94 | 194.40 | 292.30 | 336.50 | 396.20 | 588.40 | ▃▇▆▂▁ |
| PetRent | 861 | 0.30 | 26.57 | 7.47 | 7.00 | 21.00 | 26.00 | 31.00 | 61.00 | ▁▇▅▁▁ |
| PI_SCORE | 0 | 1.00 | 78.06 | 31.64 | 0.00 | 65.00 | 96.00 | 100.00 | 100.00 | ▁▁▁▁▇ |
| BldgAge | 25 | 0.98 | 36.13 | 24.00 | 0.00 | 18.00 | 33.00 | 50.00 | 136.00 | ▇▇▃▁▁ |
## **Summary Statistics:**
## - Pearson r: -0.0503
## - R²: 0.0025
## - Slope: -0.641
## - % with PI_SCORE = 0: 3.2
## **Summary Statistics:**
## - Pearson r: -0.0503
## - R²: 0.0025
## - Slope: -0.641
## - % with PI_SCORE = 0: 3.2
## **Summary Statistics:**
## - Pearson r: -0.0503
## - R²: 0.0025
## - Slope: -0.641
## - % with PI_SCORE = 0: 3.2
## **Summary Statistics:**
## - Pearson r: -0.0503
## - R²: 0.0025
## - Slope: -0.641
## - % with PI_SCORE = 0: 3.2
## **Summary Statistics:**
## - Pearson r: -0.0503
## - R²: 0.0025
## - Slope: -0.641
## - % with PI_SCORE = 0: 3.2
| RPL Theme | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| All Themes | 9.8% | 14.6% | 15.9% | 22.8% | 36.9% |
| Socioeconomic Status | 11.6% | 13.9% | 19.6% | 23.7% | 31.2% |
| Household Characteristics - | 27.6% | 12.5% | 17.1% | 19.1% | 23.7% |
| Racial & Ethnic Minority Status | 8.0% | 14.7% | 20.1% | 25.2% | 32.0% |
| Housing Type & Transportation | 6.9% | 14.9% | 22.2% | 25.0% | 31.0% |
## # A tibble: 11 × 7
## `Numeric Columns` `1` `2` `3` `4` `5` Combined
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AvgRent 1602. 1499. 1616. 1618. 1629. 1611.
## 2 WgtLimit 75 71 71 71 71.5 72
## 3 MaxPets 2 2 2 2 2 2
## 4 RefDepMin 301 315 324. 302. 327 316
## 5 RefDepMax 365 359 362 337 350. 352
## 6 RefDepAvg 322. 337. 324. 325. 335. 330.
## 7 NonRefMin 311 331 322. 336. 329 328.
## 8 NonRefMax 353 360 354 352. 349 354
## 9 NonRefAvg 344. 339. 333. 329. 331. 332.
## 10 PetRent 25.5 29 29 31 27 28
## 11 PI_SCORE 79 77 89 87.5 88 86
## # A tibble: 12 × 7
## `Logical Columns` `1` `2` `3` `4` `5` Combined
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 PetsAllow_by_Poperty 50% 48% 52% 51% 52% 51%
## 2 PetsAllow_by_Unit 77% 68% 70% 70% 73% 71%
## 3 BreedRestr_by_Poperty 88% 82% 90% 89% 83% 85%
## 4 BreedRestr_by_Unit 62% 50% 54% 55% 54% 54%
## 5 WalkArea_by_Poperty 26% 35% 28% 29% 27% 28%
## 6 WalkArea_by_Unit 7% 18% 12% 15% 12% 13%
## 7 IntvwReq_by_Poperty 7% 9% 9% 8% 6% 7%
## 8 IntvwReq_by_Unit 2% 3% 6% 2% 3% 3%
## 9 WashArea_by_Poperty 17% 14% 16% 24% 16% 18%
## 10 WashArea_by_Unit 15% 16% 8% 20% 14% 15%
## 11 PI_by_Poperty 33% 32% 35% 32% 34% 33%
## 12 PI_by_Unit 41% 41% 38% 37% 40% 39%
| Name | func_df |
| Number of rows | 1773 |
| Number of columns | 43 |
| _______________________ | |
| Column type frequency: | |
| character | 21 |
| logical | 6 |
| numeric | 16 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| PropName | 0 | 1.00 | 3 | 42 | 0 | 1656 | 0 |
| PropStat | 0 | 1.00 | 6 | 8 | 0 | 2 | 0 |
| MgmtCo | 0 | 1.00 | 4 | 86 | 0 | 482 | 0 |
| OnsiteMgr | 0 | 1.00 | 3 | 26 | 0 | 724 | 0 |
| Address | 0 | 1.00 | 8 | 46 | 0 | 1674 | 0 |
| City | 0 | 1.00 | 6 | 22 | 0 | 1671 | 0 |
| County | 51 | 0.97 | 4 | 12 | 0 | 42 | 0 |
| State | 0 | 1.00 | 4 | 14 | 0 | 50 | 0 |
| Market | 0 | 1.00 | 3 | 3 | 0 | 1 | 0 |
| SubMkt | 0 | 1.00 | 5 | 33 | 0 | 129 | 0 |
| BldgClass | 906 | 0.49 | 1 | 2 | 0 | 9 | 0 |
| BldgTier | 0 | 1.00 | 1 | 3 | 0 | 4 | 0 |
| HsgType | 1 | 1.00 | 7 | 35 | 0 | 12 | 0 |
| BldgType | 0 | 1.00 | 8 | 9 | 0 | 3 | 0 |
| Website | 964 | 0.46 | 15 | 122 | 0 | 782 | 0 |
| HTypConv | 0 | 1.00 | 5 | 12 | 0 | 2 | 0 |
| ALL_QUIN | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| SOCIO_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| HH_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| RACE_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| HTYPE_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
Variable type: logical
| skim_variable | n_missing | complete_rate | mean | count |
|---|---|---|---|---|
| PetsAllow | 0 | 1.00 | 0.51 | TRU: 905, FAL: 868 |
| BreedRestr | 871 | 0.51 | 0.81 | TRU: 733, FAL: 169 |
| WalkArea | 925 | 0.48 | 0.35 | FAL: 550, TRU: 298 |
| WasteArea | 908 | 0.49 | 0.93 | TRU: 805, FAL: 60 |
| IntvwReq | 906 | 0.49 | 0.10 | FAL: 777, TRU: 90 |
| WashArea | 865 | 0.51 | 0.13 | FAL: 786, TRU: 122 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Zip | 0 | 1.00 | 51171.53 | 42288.85 | 0.00 | 1567.00 | 59944.00 | 95691.00 | 95951.00 | ▇▁▁▁▇ |
| Units | 0 | 1.00 | 107.69 | 133.54 | 2.00 | 17.00 | 59.00 | 148.00 | 1309.00 | ▇▁▁▁▁ |
| Stories | 138 | 0.92 | 2.82 | 1.99 | 1.00 | 1.00 | 2.00 | 4.00 | 16.00 | ▇▁▁▁▁ |
| YrBuilt | 48 | 0.97 | 1981.62 | 26.04 | 1854.00 | 1965.00 | 1985.00 | 2000.00 | 2025.00 | ▁▁▂▇▇ |
| AvgRent | 1002 | 0.43 | 1650.73 | 440.70 | 610.19 | 1343.68 | 1610.73 | 1910.02 | 3345.15 | ▂▇▆▂▁ |
| WgtLimit | 1296 | 0.27 | 74.39 | 26.39 | 12.00 | 55.00 | 72.00 | 92.00 | 159.00 | ▂▇▇▃▁ |
| MaxPets | 1169 | 0.34 | 2.13 | 0.56 | 1.00 | 2.00 | 2.00 | 2.00 | 4.00 | ▁▇▁▂▁ |
| RefDepMin | 1408 | 0.21 | 318.52 | 63.71 | 142.00 | 273.00 | 316.00 | 365.00 | 567.00 | ▁▇▇▂▁ |
| RefDepMax | 1426 | 0.20 | 352.52 | 72.70 | 167.00 | 300.00 | 352.00 | 395.50 | 578.00 | ▁▆▇▃▁ |
| RefDepAvg | 1402 | 0.21 | 333.43 | 66.16 | 174.30 | 288.10 | 329.50 | 370.30 | 594.60 | ▂▇▆▂▁ |
| NonRefMin | 1321 | 0.25 | 328.11 | 68.59 | 130.00 | 277.75 | 327.50 | 374.75 | 528.00 | ▁▅▇▅▁ |
| NonRefMax | 1323 | 0.25 | 356.07 | 73.24 | 145.00 | 301.75 | 354.00 | 402.75 | 577.00 | ▁▅▇▃▁ |
| NonRefAvg | 1355 | 0.24 | 334.62 | 69.48 | 139.70 | 286.50 | 332.40 | 377.28 | 601.30 | ▁▇▇▂▁ |
| PetRent | 1301 | 0.27 | 28.98 | 8.23 | 9.00 | 23.00 | 28.00 | 33.00 | 63.00 | ▂▇▅▁▁ |
| PI_SCORE | 0 | 1.00 | 68.45 | 35.63 | 0.00 | 40.00 | 86.00 | 99.00 | 100.00 | ▂▁▂▂▇ |
| BldgAge | 46 | 0.97 | 44.34 | 26.77 | 0.00 | 25.00 | 40.00 | 60.50 | 182.00 | ▇▇▂▁▁ |
## **Summary Statistics:**
## - Pearson r: -0.017
## - R²: 3e-04
## - Slope: -0.2115
## - % with PI_SCORE = 0: 8.6
## **Summary Statistics:**
## - Pearson r: -0.017
## - R²: 3e-04
## - Slope: -0.2115
## - % with PI_SCORE = 0: 8.6
## **Summary Statistics:**
## - Pearson r: -0.017
## - R²: 3e-04
## - Slope: -0.2115
## - % with PI_SCORE = 0: 8.6
## **Summary Statistics:**
## - Pearson r: -0.017
## - R²: 3e-04
## - Slope: -0.2115
## - % with PI_SCORE = 0: 8.6
## **Summary Statistics:**
## - Pearson r: -0.017
## - R²: 3e-04
## - Slope: -0.2115
## - % with PI_SCORE = 0: 8.6
| RPL Theme | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| All Themes | 10.6% | 14.1% | 17.2% | 22.2% | 35.8% |
| Socioeconomic Status | 9.7% | 13.7% | 18.0% | 23.1% | 35.6% |
| Household Characteristics - | 23.77% | 14.08% | 18.95% | 19.79% | 23.40% |
| Racial & Ethnic Minority Status | 9.0% | 15.3% | 17.8% | 23.7% | 34.2% |
| Housing Type & Transportation | 6.5% | 14.2% | 18.6% | 26.2% | 34.5% |
## # A tibble: 11 × 7
## `Numeric Columns` `1` `2` `3` `4` `5` Combined
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AvgRent 1635. 1664. 1696. 1719. 1665. 1677.
## 2 WgtLimit 78.5 71 70 72 70 71
## 3 MaxPets 2 2 2 2 2 2
## 4 RefDepMin 324 324. 325 335 328 328
## 5 RefDepMax 364 346 356 350 349 351
## 6 RefDepAvg 339. 337. 338. 339. 345. 341.
## 7 NonRefMin 323 324 315 326. 317 320
## 8 NonRefMax 351 346 332. 343 346. 343
## 9 NonRefAvg 333. 329. 333. 328. 339. 333.
## 10 PetRent 30 30 30 31 30 31
## 11 PI_SCORE 59 60 61 60 60 60
## # A tibble: 12 × 7
## `Logical Columns` `1` `2` `3` `4` `5` Combined
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 PetsAllow_by_Poperty 38% 39% 38% 39% 37% 38%
## 2 PetsAllow_by_Unit 56% 58% 63% 61% 57% 59%
## 3 BreedRestr_by_Poperty 83% 87% 84% 85% 81% 84%
## 4 BreedRestr_by_Unit 37% 42% 41% 40% 33% 38%
## 5 WalkArea_by_Poperty 34% 36% 36% 36% 32% 34%
## 6 WalkArea_by_Unit 12% 15% 12% 15% 11% 13%
## 7 IntvwReq_by_Poperty 14% 9% 14% 10% 12% 12%
## 8 IntvwReq_by_Unit 5% 3% 6% 3% 3% 4%
## 9 WashArea_by_Poperty 12% 14% 15% 12% 13% 13%
## 10 WashArea_by_Unit 10% 11% 12% 8% 7% 9%
## 11 PI_by_Poperty 22% 27% 27% 24% 26% 25%
## 12 PI_by_Unit 22% 28% 37% 29% 27% 29%
| Name | func_df |
| Number of rows | 5957 |
| Number of columns | 43 |
| _______________________ | |
| Column type frequency: | |
| character | 21 |
| logical | 6 |
| numeric | 16 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| PropName | 0 | 1.00 | 2 | 39 | 0 | 5216 | 0 |
| PropStat | 0 | 1.00 | 6 | 8 | 0 | 2 | 0 |
| MgmtCo | 0 | 1.00 | 4 | 88 | 0 | 1027 | 0 |
| OnsiteMgr | 1 | 1.00 | 3 | 29 | 0 | 1992 | 0 |
| Address | 0 | 1.00 | 8 | 47 | 0 | 5226 | 0 |
| City | 1 | 1.00 | 6 | 24 | 0 | 5007 | 0 |
| County | 49 | 0.99 | 4 | 12 | 0 | 44 | 0 |
| State | 0 | 1.00 | 4 | 14 | 0 | 50 | 0 |
| Market | 0 | 1.00 | 11 | 11 | 0 | 1 | 0 |
| SubMkt | 0 | 1.00 | 4 | 33 | 0 | 149 | 0 |
| BldgClass | 3810 | 0.36 | 1 | 2 | 0 | 9 | 0 |
| BldgTier | 0 | 1.00 | 1 | 3 | 0 | 4 | 0 |
| HsgType | 2 | 1.00 | 7 | 35 | 0 | 14 | 0 |
| BldgType | 0 | 1.00 | 8 | 9 | 0 | 4 | 0 |
| Website | 3141 | 0.47 | 15 | 144 | 0 | 2516 | 0 |
| HTypConv | 0 | 1.00 | 5 | 12 | 0 | 2 | 0 |
| ALL_QUIN | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| SOCIO_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| HH_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| RACE_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| HTYPE_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
Variable type: logical
| skim_variable | n_missing | complete_rate | mean | count |
|---|---|---|---|---|
| PetsAllow | 0 | 1.00 | 0.38 | FAL: 3696, TRU: 2261 |
| BreedRestr | 3733 | 0.37 | 0.78 | TRU: 1732, FAL: 492 |
| WalkArea | 3682 | 0.38 | 0.42 | FAL: 1324, TRU: 951 |
| WasteArea | 3752 | 0.37 | 0.95 | TRU: 2104, FAL: 101 |
| IntvwReq | 3789 | 0.36 | 0.16 | FAL: 1823, TRU: 345 |
| WashArea | 3755 | 0.37 | 0.09 | FAL: 1993, TRU: 209 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Zip | 0 | 1.00 | 52042.41 | 42077.55 | 0.00 | 1845.00 | 64149.00 | 95725.00 | 95951.00 | ▆▁▁▁▇ |
| Units | 0 | 1.00 | 77.26 | 107.40 | 2.00 | 9.00 | 35.00 | 103.00 | 1057.00 | ▇▁▁▁▁ |
| Stories | 438 | 0.93 | 2.83 | 2.05 | 1.00 | 1.00 | 2.00 | 4.00 | 18.00 | ▇▁▁▁▁ |
| YrBuilt | 148 | 0.98 | 1970.60 | 28.03 | 1833.00 | 1953.00 | 1973.00 | 1990.00 | 2025.00 | ▁▁▃▇▅ |
| AvgRent | 3443 | 0.42 | 1727.68 | 459.80 | 649.88 | 1404.61 | 1677.02 | 2005.55 | 4074.29 | ▃▇▃▁▁ |
| WgtLimit | 4393 | 0.26 | 72.91 | 26.30 | 12.00 | 54.00 | 71.00 | 90.00 | 165.00 | ▂▇▆▂▁ |
| MaxPets | 3811 | 0.36 | 2.11 | 0.60 | 1.00 | 2.00 | 2.00 | 2.00 | 4.00 | ▂▇▁▂▁ |
| RefDepMin | 4680 | 0.21 | 328.66 | 68.87 | 114.00 | 283.00 | 328.00 | 374.00 | 589.00 | ▁▅▇▂▁ |
| RefDepMax | 4636 | 0.22 | 354.97 | 76.49 | 130.00 | 300.00 | 351.00 | 405.00 | 622.00 | ▁▆▇▂▁ |
| RefDepAvg | 4675 | 0.22 | 341.93 | 68.21 | 96.60 | 294.20 | 340.55 | 386.17 | 572.20 | ▁▃▇▃▁ |
| NonRefMin | 4494 | 0.25 | 322.12 | 67.79 | 134.00 | 275.50 | 320.00 | 366.00 | 573.00 | ▁▇▇▂▁ |
| NonRefMax | 4506 | 0.24 | 346.29 | 74.73 | 141.00 | 292.00 | 343.00 | 395.00 | 650.00 | ▂▇▇▂▁ |
| NonRefAvg | 4423 | 0.26 | 336.10 | 67.37 | 117.80 | 291.02 | 333.05 | 379.00 | 549.50 | ▁▃▇▃▁ |
| PetRent | 4225 | 0.29 | 31.47 | 8.64 | 11.00 | 25.00 | 31.00 | 37.00 | 66.00 | ▂▇▅▁▁ |
| PI_SCORE | 0 | 1.00 | 54.19 | 39.08 | 0.00 | 12.00 | 60.00 | 95.00 | 100.00 | ▆▂▂▂▇ |
| BldgAge | 130 | 0.98 | 55.48 | 29.69 | 0.00 | 34.00 | 52.00 | 74.00 | 198.00 | ▆▇▃▁▁ |
## **Summary Statistics:**
## - Pearson r: -0.0196
## - R²: 4e-04
## - Slope: -0.2465
## - % with PI_SCORE = 0: 18.7
## **Summary Statistics:**
## - Pearson r: -0.0196
## - R²: 4e-04
## - Slope: -0.2465
## - % with PI_SCORE = 0: 18.7
## **Summary Statistics:**
## - Pearson r: -0.0196
## - R²: 4e-04
## - Slope: -0.2465
## - % with PI_SCORE = 0: 18.7
## **Summary Statistics:**
## - Pearson r: -0.0196
## - R²: 4e-04
## - Slope: -0.2465
## - % with PI_SCORE = 0: 18.7
## **Summary Statistics:**
## - Pearson r: -0.0196
## - R²: 4e-04
## - Slope: -0.2465
## - % with PI_SCORE = 0: 18.7
| RPL Theme | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| All Themes | 10.63% | 15.66% | 15.95% | 19.04% | 38.72% |
| Socioeconomic Status | 8.3% | 14.6% | 14.6% | 21.7% | 40.9% |
| Household Characteristics - | 24.7% | 13.9% | 18.2% | 20.7% | 22.6% |
| Racial & Ethnic Minority Status | 8.55% | 16.74% | 16.16% | 24.28% | 34.27% |
| Housing Type & Transportation | 7.2% | 11.8% | 17.1% | 26.8% | 37.1% |
## # A tibble: 11 × 7
## `Numeric Columns` `1` `2` `3` `4` `5` Combined
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AvgRent 1944. 1875. 1777. 1806. 1724. 1790.
## 2 WgtLimit 65.5 65.5 68 74.5 74 72
## 3 MaxPets 2 2 2 2 2 2
## 4 RefDepMin 336 340. 326 311 349 335
## 5 RefDepMax 344 378. 344. 380. 346 358
## 6 RefDepAvg 344. 335. 332. 327. 341. 335.
## 7 NonRefMin 310 311 296 321 313 311
## 8 NonRefMax 344. 328 321 335 346 336.
## 9 NonRefAvg 294. 318. 324. 330. 329. 326.
## 10 PetRent 33 34 35 33 36 35
## 11 PI_SCORE 14.5 23.5 23.5 19 21 21
## # A tibble: 12 × 7
## `Logical Columns` `1` `2` `3` `4` `5` Combined
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 PetsAllow_by_Poperty 24% 28% 19% 24% 25% 25%
## 2 PetsAllow_by_Unit 55% 46% 40% 38% 46% 45%
## 3 BreedRestr_by_Poperty 71% 73% 80% 79% 83% 79%
## 4 BreedRestr_by_Unit 24% 23% 25% 20% 27% 24%
## 5 WalkArea_by_Poperty 29% 33% 30% 45% 38% 36%
## 6 WalkArea_by_Unit 11% 5% 10% 7% 11% 9%
## 7 IntvwReq_by_Poperty 15% 16% 10% 27% 17% 17%
## 8 IntvwReq_by_Unit 7% 0% 2% 3% 2% 2%
## 9 WashArea_by_Poperty 5% 7% 11% 11% 7% 8%
## 10 WashArea_by_Unit 2% 0% 5% 3% 3% 3%
## 11 PI_by_Poperty 20% 19% 20% 22% 19% 20%
## 12 PI_by_Unit 19% 18% 18% 16% 20% 19%
| Name | func_df |
| Number of rows | 1392 |
| Number of columns | 43 |
| _______________________ | |
| Column type frequency: | |
| character | 21 |
| logical | 6 |
| numeric | 16 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| PropName | 0 | 1.00 | 3 | 41 | 0 | 1278 | 0 |
| PropStat | 0 | 1.00 | 6 | 8 | 0 | 2 | 0 |
| MgmtCo | 0 | 1.00 | 5 | 84 | 0 | 425 | 0 |
| OnsiteMgr | 0 | 1.00 | 5 | 23 | 0 | 440 | 0 |
| Address | 0 | 1.00 | 8 | 47 | 0 | 1265 | 0 |
| City | 0 | 1.00 | 6 | 24 | 0 | 1300 | 0 |
| County | 2 | 1.00 | 5 | 12 | 0 | 16 | 0 |
| State | 0 | 1.00 | 4 | 14 | 0 | 50 | 0 |
| Market | 0 | 1.00 | 12 | 12 | 0 | 1 | 0 |
| SubMkt | 0 | 1.00 | 4 | 33 | 0 | 51 | 0 |
| BldgClass | 1081 | 0.22 | 1 | 2 | 0 | 9 | 0 |
| BldgTier | 0 | 1.00 | 1 | 3 | 0 | 4 | 0 |
| HsgType | 0 | 1.00 | 7 | 35 | 0 | 9 | 0 |
| BldgType | 0 | 1.00 | 8 | 9 | 0 | 4 | 0 |
| Website | 756 | 0.46 | 18 | 141 | 0 | 614 | 0 |
| HTypConv | 0 | 1.00 | 5 | 12 | 0 | 2 | 0 |
| ALL_QUIN | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| SOCIO_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| HH_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| RACE_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| HTYPE_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
Variable type: logical
| skim_variable | n_missing | complete_rate | mean | count |
|---|---|---|---|---|
| PetsAllow | 0 | 1.00 | 0.25 | FAL: 1050, TRU: 342 |
| BreedRestr | 1065 | 0.23 | 0.71 | TRU: 232, FAL: 95 |
| WalkArea | 1036 | 0.26 | 0.48 | FAL: 186, TRU: 170 |
| WasteArea | 1054 | 0.24 | 0.96 | TRU: 323, FAL: 15 |
| IntvwReq | 1085 | 0.22 | 0.21 | FAL: 243, TRU: 64 |
| WashArea | 1079 | 0.22 | 0.04 | FAL: 300, TRU: 13 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Zip | 0 | 1.00 | 51495.39 | 41865.91 | 0.00 | 1812.25 | 62165.00 | 95694.25 | 95951.00 | ▇▁▁▁▇ |
| Units | 0 | 1.00 | 50.45 | 81.40 | 2.00 | 4.00 | 16.00 | 61.00 | 612.00 | ▇▁▁▁▁ |
| Stories | 79 | 0.94 | 2.67 | 1.90 | 1.00 | 1.00 | 2.00 | 3.00 | 14.00 | ▇▂▁▁▁ |
| YrBuilt | 23 | 0.98 | 1954.56 | 30.68 | 1826.00 | 1935.00 | 1956.00 | 1976.00 | 2025.00 | ▁▁▆▇▃ |
| AvgRent | 798 | 0.43 | 1831.75 | 468.79 | 728.01 | 1491.24 | 1790.13 | 2109.79 | 3714.12 | ▂▇▆▂▁ |
| WgtLimit | 1027 | 0.26 | 74.53 | 26.95 | 13.00 | 56.00 | 72.00 | 91.00 | 168.00 | ▂▇▆▂▁ |
| MaxPets | 920 | 0.34 | 2.17 | 0.60 | 1.00 | 2.00 | 2.00 | 2.00 | 5.00 | ▁▇▂▁▁ |
| RefDepMin | 1097 | 0.21 | 336.17 | 67.97 | 114.00 | 289.50 | 335.00 | 386.00 | 539.00 | ▁▃▇▅▁ |
| RefDepMax | 1089 | 0.22 | 362.40 | 79.30 | 165.00 | 306.50 | 358.00 | 411.50 | 593.00 | ▂▆▇▃▁ |
| RefDepAvg | 1092 | 0.22 | 344.56 | 66.47 | 196.10 | 300.82 | 335.10 | 385.40 | 560.70 | ▂▇▆▂▁ |
| NonRefMin | 1051 | 0.24 | 315.74 | 66.43 | 137.00 | 267.00 | 311.00 | 355.00 | 565.00 | ▁▇▇▂▁ |
| NonRefMax | 1054 | 0.24 | 337.30 | 70.41 | 143.00 | 288.00 | 335.50 | 386.00 | 552.00 | ▁▆▇▃▁ |
| NonRefAvg | 1045 | 0.25 | 331.89 | 66.48 | 173.30 | 287.90 | 325.60 | 374.10 | 596.90 | ▂▇▆▁▁ |
| PetRent | 996 | 0.28 | 35.89 | 9.98 | 10.00 | 29.00 | 35.00 | 42.00 | 82.00 | ▂▇▅▁▁ |
| PI_SCORE | 0 | 1.00 | 37.65 | 38.25 | 0.00 | 1.75 | 21.00 | 78.00 | 100.00 | ▇▂▂▂▃ |
| BldgAge | 30 | 0.98 | 72.03 | 32.83 | 0.00 | 48.00 | 69.00 | 93.00 | 209.00 | ▃▇▅▁▁ |
## **Summary Statistics:**
## - Pearson r: -0.0559
## - R²: 0.0031
## - Slope: -0.6945
## - % with PI_SCORE = 0: 8.2
## **Summary Statistics:**
## - Pearson r: -0.0559
## - R²: 0.0031
## - Slope: -0.6945
## - % with PI_SCORE = 0: 8.2
## **Summary Statistics:**
## - Pearson r: -0.0559
## - R²: 0.0031
## - Slope: -0.6945
## - % with PI_SCORE = 0: 8.2
## **Summary Statistics:**
## - Pearson r: -0.0559
## - R²: 0.0031
## - Slope: -0.6945
## - % with PI_SCORE = 0: 8.2
## **Summary Statistics:**
## - Pearson r: -0.0559
## - R²: 0.0031
## - Slope: -0.6945
## - % with PI_SCORE = 0: 8.2
| RPL Theme | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| All Themes | 10.5% | 14.2% | 16.7% | 22.0% | 36.6% |
| Socioeconomic Status | 10.4% | 13.8% | 17.9% | 23.1% | 34.7% |
| Household Characteristics - | 24.9% | 13.9% | 18.3% | 19.5% | 23.4% |
| Racial & Ethnic Minority Status | 8.7% | 15.2% | 18.2% | 24.0% | 33.9% |
| Housing Type & Transportation | 6.7% | 14.0% | 19.7% | 26.2% | 33.3% |
## # A tibble: 11 × 7
## `Numeric Columns` `1` `2` `3` `4` `5` Combined
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AvgRent 1639. 1646. 1666. 1680. 1651. 1657.
## 2 WgtLimit 74 71 70 73 71 71
## 3 MaxPets 2 2 2 2 2 2
## 4 RefDepMin 325 322 325 324 328 326
## 5 RefDepMax 361 354 355 352 349 352
## 6 RefDepAvg 334. 336. 336 336. 341. 337.
## 7 NonRefMin 318 324. 315 324 322 321
## 8 NonRefMax 350. 346. 336. 346 348 346
## 9 NonRefAvg 335. 330. 332. 330. 336. 332.
## 10 PetRent 29 30 30 31 30 30
## 11 PI_SCORE 65.5 65 67 69 69 67
## # A tibble: 12 × 7
## `Logical Columns` `1` `2` `3` `4` `5` Combined
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 PetsAllow_by_Poperty 41% 41% 40% 42% 41% 41%
## 2 PetsAllow_by_Unit 65% 62% 65% 66% 64% 64%
## 3 BreedRestr_by_Poperty 84% 86% 87% 86% 83% 85%
## 4 BreedRestr_by_Unit 46% 46% 48% 48% 43% 46%
## 5 WalkArea_by_Poperty 29% 34% 32% 33% 30% 31%
## 6 WalkArea_by_Unit 10% 14% 12% 15% 12% 13%
## 7 IntvwReq_by_Poperty 11% 9% 12% 10% 11% 10%
## 8 IntvwReq_by_Unit 4% 3% 5% 3% 3% 3%
## 9 WashArea_by_Poperty 15% 15% 18% 17% 15% 16%
## 10 WashArea_by_Unit 14% 14% 14% 13% 11% 13%
## 11 PI_by_Poperty 26% 28% 29% 26% 28% 27%
## 12 PI_by_Unit 32% 34% 38% 32% 33% 34%
| Name | func_df |
| Number of rows | 10349 |
| Number of columns | 43 |
| _______________________ | |
| Column type frequency: | |
| character | 21 |
| logical | 6 |
| numeric | 16 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| PropName | 0 | 1.00 | 2 | 45 | 0 | 8493 | 0 |
| PropStat | 0 | 1.00 | 6 | 8 | 0 | 2 | 0 |
| MgmtCo | 0 | 1.00 | 4 | 88 | 0 | 1265 | 0 |
| OnsiteMgr | 1 | 1.00 | 3 | 29 | 0 | 3233 | 0 |
| Address | 0 | 1.00 | 8 | 47 | 0 | 8621 | 0 |
| City | 1 | 1.00 | 6 | 24 | 0 | 7940 | 0 |
| County | 156 | 0.98 | 4 | 12 | 0 | 53 | 0 |
| State | 0 | 1.00 | 4 | 14 | 0 | 50 | 0 |
| Market | 0 | 1.00 | 3 | 12 | 0 | 4 | 0 |
| SubMkt | 0 | 1.00 | 4 | 33 | 0 | 163 | 0 |
| BldgClass | 6327 | 0.39 | 1 | 2 | 0 | 9 | 0 |
| BldgTier | 0 | 1.00 | 1 | 3 | 0 | 4 | 0 |
| HsgType | 3 | 1.00 | 7 | 35 | 0 | 16 | 0 |
| BldgType | 0 | 1.00 | 8 | 9 | 0 | 4 | 0 |
| Website | 5538 | 0.46 | 15 | 144 | 0 | 3945 | 0 |
| HTypConv | 0 | 1.00 | 5 | 12 | 0 | 2 | 0 |
| ALL_QUIN | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| SOCIO_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| HH_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| RACE_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
| HTYPE_QUI | 0 | 1.00 | 1 | 1 | 0 | 5 | 0 |
Variable type: logical
| skim_variable | n_missing | complete_rate | mean | count |
|---|---|---|---|---|
| PetsAllow | 0 | 1.00 | 0.41 | FAL: 6087, TRU: 4262 |
| BreedRestr | 6146 | 0.41 | 0.79 | TRU: 3338, FAL: 865 |
| WalkArea | 6134 | 0.41 | 0.39 | FAL: 2575, TRU: 1640 |
| WasteArea | 6211 | 0.40 | 0.94 | TRU: 3886, FAL: 252 |
| IntvwReq | 6278 | 0.39 | 0.14 | FAL: 3495, TRU: 576 |
| WashArea | 6176 | 0.40 | 0.11 | FAL: 3694, TRU: 479 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Zip | 0 | 1.00 | 51248.06 | 42123.51 | 0.00 | 1522.00 | 60576.00 | 95668.00 | 95951.00 | ▇▁▁▁▇ |
| Units | 0 | 1.00 | 87.14 | 121.51 | 2.00 | 10.00 | 39.00 | 116.00 | 1309.00 | ▇▁▁▁▁ |
| Stories | 741 | 0.93 | 2.82 | 2.03 | 1.00 | 1.00 | 2.00 | 4.00 | 19.00 | ▇▁▁▁▁ |
| YrBuilt | 246 | 0.98 | 1972.59 | 29.30 | 1826.00 | 1954.00 | 1975.00 | 1994.00 | 2025.00 | ▁▁▃▇▆ |
| AvgRent | 5901 | 0.43 | 1709.62 | 460.36 | 610.19 | 1389.95 | 1656.57 | 1989.30 | 4074.29 | ▂▇▃▁▁ |
| WgtLimit | 7575 | 0.27 | 73.43 | 26.25 | 12.00 | 55.00 | 71.00 | 90.00 | 168.00 | ▂▇▆▂▁ |
| MaxPets | 6711 | 0.35 | 2.13 | 0.60 | 1.00 | 2.00 | 2.00 | 2.00 | 5.00 | ▁▇▂▁▁ |
| RefDepMin | 8163 | 0.21 | 326.78 | 67.20 | 112.00 | 280.00 | 326.00 | 372.00 | 589.00 | ▁▅▇▂▁ |
| RefDepMax | 8118 | 0.22 | 354.90 | 76.19 | 130.00 | 300.00 | 352.00 | 405.00 | 622.00 | ▁▆▇▃▁ |
| RefDepAvg | 8147 | 0.21 | 339.94 | 67.74 | 96.60 | 293.02 | 337.40 | 382.87 | 594.60 | ▁▃▇▃▁ |
| NonRefMin | 7793 | 0.25 | 323.20 | 67.81 | 130.00 | 276.00 | 321.00 | 368.00 | 573.00 | ▁▇▇▂▁ |
| NonRefMax | 7793 | 0.25 | 348.06 | 73.96 | 141.00 | 295.00 | 346.00 | 395.25 | 650.00 | ▁▇▇▂▁ |
| NonRefAvg | 7741 | 0.25 | 336.01 | 67.68 | 117.80 | 290.20 | 332.50 | 378.80 | 601.30 | ▁▆▇▂▁ |
| PetRent | 7383 | 0.29 | 31.06 | 8.99 | 7.00 | 25.00 | 30.00 | 36.00 | 82.00 | ▂▇▂▁▁ |
| PI_SCORE | 0 | 1.00 | 57.24 | 39.26 | 0.00 | 14.00 | 67.00 | 97.00 | 100.00 | ▆▂▂▂▇ |
| BldgAge | 231 | 0.98 | 53.51 | 30.69 | 0.00 | 31.00 | 49.00 | 72.00 | 209.00 | ▇▇▂▁▁ |
PropName = No missing values. Either there is an address listed or the name of the property complex
PropStat = If an apartment complex has 50 units or more, then it is considered active. Otherwise, it is considered inactive. Unclear whether it is available units or total units.
MgmtCo = Assuming that NA values mean there is no management company, 45% of the properties do not have a management company, 55% do have a management company.
OnsiteMgr = 61% of properties do not have an onsite manager, and 39% of the properties have an onsite manager. 4 of the rows were missing a value.
Market = There are 4 Markets. None of the counties overlap with multiple markets. Many counties overlap with multiple submarkets. None of the census tracts overlap with other markets, but they do overlap with some of the submarket. IE a census track has multiple sub markets.
SubMkt = There are a total of 164 SubMarkets and of those, 37 are in Atlanta, 72 are in DFW, 31 are in Los Angeles, and 24 are in Philadelphia. The number of properties in each submarket range from 22 - 307 in Atlanta, 4 - 306 in DFW, 1 - 2150 in Los Angeles, and 17 - 424 in Philadelhpia.
Units = There are some properties that have 0 units, so this most likely means the Units column refers to the number of available units instead of total units. This also means PropStat active vs inactive is in regard to whether there are available units.
BldgClass and BldgTier = Generally refers to the age of the building, location, high quality areas. Class include pluses and minuses while Tier does not. 61% of properties do not have a BldgClass or BldgTier listed.
HsgType = A majority of the housing types are strictly conventional, 83%. The rest contain some combination of section 8, senior, student, and other types. There are only 8 that do not have a housing type listed.
BldgType = A majority of the buildings are Low Rise apartment buildings, 85%. The rest are either Mid Rise, High Rise, or Sky Rise. The taller, the less amount there are. No properties are missing these values.
Stories = Lists the number of stories a building has. If a building has 3 or less stories, then it is a low rise. If it has 4 to 10 stories, then it is a mid rise. If it has 11 - 39 stories, it is a high rise. If it has 40 or more, then it is considered a sky rise apartment.
AvgRent = There are no null values, but over half of the properties list an avg rent of 0, 58%.
PetsAllow = There are no Null values. Of all of the properties, 38% allow pets. There are quite a few properties do not allow pets, but have answers to other questions. For example, some don’t allow pets, but they have breed restrictions. In my opinion, all other columns should be null. A TRUE value for this column results in a score of 28.
BreedRestr = Their are some instances where the property does not allow pets, but they breed restriction field is TRUE. This is most likely an error. For cleaning, any time Pets Allow equaled FALSE, I set all of the other values to FALSE or NA
MaxPets = Some properties, very small amount, allow pets, but their max pets is 0. This value is usually given to Max pets because allow pets is FALSE. A value of 255 means they do not have a max pet limit. There are no instances where PetsAllow = TRUE and their is no value given for Max Pets.
WgtLimit = Similar to max pets, there are instances where the property allows pets, but their weight limit is set to zero. If the property has a value of zero for weight limit, they are given a score of 0. Since there are so few, this shouldn’t affect the analysis, but we do need to figure out how to handle these before the paper. There are no instances where PetsAllow = TRUE and their is no value given for WgtLimit.
Deposit Variables There are 6 variables related to pet deposits, the min, max, and average for refundable and nonrefundable deposits. Originally, properties that allowed pets, but did not require a deposit of any kind were given a value of 0. A pet deposit of 0 does not make sense. If there is not pet rent, then the value should be considered not applicable. When performing numerical operations and statistical analysis with while including zero values will mess with the results. Some properties have both a refundable and nonrefundable pet depoist, and there are some that only have one.
PetRent Petrent had the same situation as the deposit variables, so I performed the same cleaning and logic steps on the PetRent variables as the deposit variables
Pet Inclusive Score Variables I only kept the PI Score variables which is the summation of the other pet inclusive variables.